THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Homework 5 solutions

Compulsory Part

1. Let K and L be normal subgroups of G with $K \vee L = G$, and $K \cap L = \{e\}$. Show that $G/K \simeq L$ and $G/L \simeq K$.

Answer. Let K and L be normal subgroups of G with $K \vee L = G$, and $K \cap L = \{e\}$. Then $G = K \vee L = KL = LK$. By the second isomorphism theorem, $G/K = KL/K \simeq L/L \cap K = L/\{e\} \simeq L$, and $G/L = KL/L \simeq K/K \cap L = K/\{e\} \simeq K$.

2. Suppose

$$\{e\} \longrightarrow N \stackrel{\iota}{\longrightarrow} G \stackrel{\varphi}{\longrightarrow} K \to \{e\}$$

is an exact sequence of groups. Suppose also that there is a group homomorphism $\tau:G\to N$ such that $\tau\circ\iota=\mathrm{id}_N.$ Prove that $G\simeq N\times K.$

Answer. Define a map $\psi: G \to N \times K$ by $\psi(g) = (\tau(g), \varphi(g))$. We need to show that this map is an isomorphism.

- 1. ψ is a homomorphism: Since τ and φ are group homomorphisms, so is ψ .
- 2. ψ is injective: Suppose $\psi(g) = e_{H \times K}$. Then $\tau(g) = e$ and $\varphi(g) = e$. Since $\varphi(g) = e$, $g \in \ker(\phi) = \iota(N)$. Then $g = \iota(n)$ for some $n \in N$, and $n = \operatorname{id}_N(n) = \tau(\iota(n)) = \tau(g) = e$. Then $g = \iota(n) = e$. Therefore, $\ker(\psi) = \{e\}$ and ψ is injective.
- 3. ψ is surjective: For every $(n,k) \in N \times K$, pick $g \in G$ such that $\varphi(g) = k$. Then $\psi(g) = (\tau(g),k)$. Let $n_1 = \tau(g)^{-1}n \in N$. Then $\varphi(g\iota(n_1)) = (\tau(g\iota(n_1)), \varphi(g\iota(n_1))) = (\tau(g)n_1, \varphi(g)) = (n,k)$. Therefore, ψ is surjective.

Therefore, ψ is an isomorphism, so $G \simeq N \times K$.

3. Show that if

$$H_0 = \{e\} < H_1 < H_2 < \dots < H_n = G$$

is a subnormal (normal) series for a group G, and if H_{i+1}/H_i is of finite order s_{i+1} , then G is of finite order $s_1s_2\cdots s_n$.

Answer. Note that $\frac{|H_{i+1}|}{|H_i|} = |H_{i+1}/H_i| = s_{i+1}$. Therefore, $|G| = |G|/1 = \frac{|H_n|}{|H_0|} = \prod_{i=0}^{n-1} \frac{|H_{i+1}|}{|H_i|} = s_1...s_n$.

4. Show that an infinite abelian group can have no composition series.

[*Hint:* Use the preceding exercise, together with the fact that an infinite abelian group always has a proper normal subgroup.]

Answer. First we show that an infinite abelian group cannot be simple: Let H be an infinite abelian group. Let $h \in H$ be an element different from e. If $\langle h \rangle$ is finite, then $\langle h \rangle < H$ is a nontrivial proper normal subgroup of H. If $\langle h \rangle$ is infinite, then $\langle h^2 \rangle \subseteq \langle h \rangle \subseteq H$, and so $\langle h^2 \rangle$ is a nontrivial proper normal subgroup of H. In either case, H is not simple.

Now, let G be an infinite abelian group. Suppose that G has a composition series, that is, there is a subnormal series $H_0 = \{e\} < H_1 < H_2 < \cdots < H_n = G$ such that each H_{i+1}/H_i is simple. Then each H_{i+1} , being a subgroup of G, is abelian. Then each H_{i+1}/H_i is abelian, and so H_{i+1}/H_i is finite by the preceding paragraph. Then, by question 7, G is also of finite order. Contradiction arises. Therefore, G can have no composition series.

Remark. There are a lot of infinite simple groups. For example, $PSL_n(k)$ $(n \ge 2)$ is simple whenever $n \ge 3$ or $|k| \ge 4$. In particular, $PSL_n(k)$ is an infinite simple group for $|k| = \infty$.

5. Show that a finite direct product of solvable groups is solvable.

Answer. Let $G = G_1 \times ... \times G_n$, where each G_i is solvable. We prove by induction on n that G is solvable.

When n=1, clearly, G is solvable. When $n\geq 2$, by induction hypothesis, $G':=G_1\times ...\times G_{n-1}$ is solvable. Let $\{e\}=H_0< H_1<...< H_a=G'$ be a subnormal series such that each H_{i+1}/H_i is abelian. Let $\{e\}=K_0< K_1<...< K_b=G_n$ be a subnormal series such that each K_{i+1}/K_i is abelian. Then $H_0\times K_0< H_1\times K_0<...< H_a\times K_0< H_a\times K_0< H_a\times K_0< H_a\times K_0$ is a subnormal series of $G=G'\times G_n$ such that each quotient is isomorphic to some H_{i+1}/H_i or some K_{i+1}/K_i , and is abelian. Then G is solvable.

Optional Part

- 1. Suppose N is a normal subgroup of a group G of prime index p. Show that, for any subgroup H < G, we either have
 - H < N, or
 - G = HN and $[H : H \cap N] = p$.

Answer. Suppose N is a normal subgroup of a group G of prime index p. Let H < G. Suppose H is not contained in N, then HN/N < G/N is a nontrivial subgroup. Since |G/N| = [G:N] = p, HN/N = G/N. Therefore, HN = G, and by the second isomorphism theorem, $H/H \cap N \simeq HN/N$ has order p. Therefore, $[H:H \cap N] = p$.

2. Suppose N is a normal subgroup of a group G such that $N \cap [G, G] = \{e\}$. Show that $N \leq Z(G)$.

[Hint: For $g \in G$, $n \in N$, $gng^{-1}n^{-1} \in N \cap [G, G] = \{e\}$.]

Answer. Let $n \in N$ and $g \in G$, consider $gng^{-1}n^{-1}$, since N is normal, we have $gng^{-1} \in N$ and so $gng^{-1}n^{-1} \in N$. And also $gng^{-1}n^{-1}$ is a commutator so it is an element of [G,G]. By assumption, we have $gng^{-1}=e$, so $n \in Z(G)$.

3. Let $H_0 = \{e\} < H_1 < \cdots < H_n = G$ be a composition series for a group G. Let N be a normal subgroup of G, and suppose that N is a simple group. Show that the distinct groups among $H_0, H_i N$ for $i = 0, \cdots, n$ also form a composition series for G.

[Hint: Note that H_iN is a group. Show that $H_{i-1}N$ is normal in H_iN . Then we have

$$(H_i N)/(H_{i-1} N) \simeq H_i/[H_i \cap (H_{i-1} N)],$$

and the latter group is isomorphic to

$$[H_i/H_{i-1}]/[(H_i \cap (H_{i-1}N))/H_{i-1}].$$

But H_i/H_{i-1} is simple.]

Answer. Let $H_0 = \{e\} < H_1 < \cdots < H_n = G$ be a composition series for a group G. Let N be a normal subgroup of G, and suppose that N is a simple group.

For each i, $H_{i-1} \triangleleft H_i$, and $N \triangleleft H_i N$. Then for each $h \in H_i$, $hH_{i-1}h^{-1} = H_{i-1}$, and $hNh^{-1} = N$. Then $hH_{i-1}Nh^{-1} = hH_{i-1}h^{-1}hNh^{-1} = H_{i-1}N$. Then $H_i < N_G(H_{i-1}N)$, the normalizer of $H_{i-1}N$ in G. Clearly, $N < N_G(H_{i-1}N)$. Then $H_iN < N_G(H_{i-1}N)$, and so $H_{i-1}N \triangleleft H_iN$.

Noting that $H_iN = H_i(H_{i-1}N)$, we have $H_{i-1}N \lhd H_i$ and $H_iN/H_{i-1}N \simeq H_i/(H_i \cap H_{i-1}N)$ by the second isomorphism theorem. Note that $H_{i-1} < H_{i-1}N$ are two normal subgroups of H_i , so we have $H_i/(H_i \cap H_{i-1}N) \simeq [H_i/H_{i-1}]/[(H_i \cap H_{i-1}N)/H_{i-1}]$ by the third isomorphism theorem. Therefore, $H_iN/H_{i-1}N$ is isomorphic to a quotient of H_i/H_{i-1} . Since each H_i/H_{i-1} is simple, so if $H_iN/H_{i-1}N$ is nontrivial, then it is isomorphic to H_i/H_{i-1} , and is simple.

Now, the series $H_0 < H_0 N < H_1 N < ... < H_n N = G$ is a subnormal series, and each successive quotient is either trivial or simple. Therefore, selecting distinct groups among them will result in a composition series for G.

4. If H is a maximal proper subgroup of a finite solvable group G, prove that [G:H] is a prime power.

Answer. Note that the statement is true when G is a finite abelian group, this follows from classification of finitely generated abelian group, whereby one can write down explicit maximal proper subgroups, all of which have prime index.

A subgroup N is called minimal normal if it is nontrivial and normal in G and the only proper subgroup $M \leq N$ which is normal in G is the trivial subgroup. Note that N' = [N, N] is a normal subgroup of G, since $g[n_1, n_2]g^{-1} = [gn_1g^{-1}, gn_2g^{-1}]$ for $g \in G$, $n_1, n_2 \in N$. By solvability of G and minimality of G, we know G is trivial, i.e. G must be abelian. Let G be a prime that divides G (check this). By Cauchy's theorem (see lecture 5), G (so by minimality of G), we have G (check this). By Cauchy's theorem (see lecture 5), G (so by minimality of G), we have G (so by G), i.e. every G (satisfies G) and G) is implies that G (so by G) for some G). Such groups are called elementary abelian groups.

Now we prove the statement using induction. Consider $H \leq HN \leq G$, by normality of N, we know HN is a subgroup. The case for which G is abelian is known as explained before, so from now we assume that G is nonabelian but solvable. Then N is proper since for example [G,G] is normal. By maximality of H, we know HN=H or HN=G. In the first case HN=H, consider HN/N=H/N, it is solvable since it is a subgroup of G/N, which is also solvable. Also, H/N is a maximal subgroup of G/N, which has strictly smaller order than G since N is proper. By induction hypothesis, [G/N:H/N] is a prime power, but this index is equal to [G:H], so we are done. In the second case, HN=G, so $[G:H]=[HN:H]=[N:H\cap N]$ by second isomorphism theorem. By the above result in the previous paragraph, we know $[N:H\cap N]$ is a prime power.